64 | 0 | 8 |
下载次数 | 被引频次 | 阅读次数 |
为提高纤维素对Ni(II)的吸附效果,通过环氧氯丙烷交联和苹果酸羧基化改性,制备具有良好吸附性能的羧基改性纤维素气凝胶。采用扫描电子显微镜、傅里叶变换红外光谱仪和X射线衍射仪系统表征材料羧基化前后的变化,结果表明,改性过程实现了纤维素表面羟基与苹果酸中羧基的有效酯化,所得气凝胶呈现典型的三维蜂窝状多孔结构。通过条件优化实验发现,当苹果酸与纤维素质量比为1.75∶1、磷酸二氢钠用量为0.5 g/g、130℃反应210 min时,制备的改性纤维素气凝胶在pH为7.0、吸附时间为120 min条件下,对Ni(II)的去除率可达92.61%。动力学及热力学分析结果表明,苹果酸改性纤维素气凝胶对Ni(II)的吸附过程可由准二级动力学模型描述,符合Langmuir等温吸附模型,且为自发进行的吸热过程。
Abstract:To improve the adsorption effect of cellulose on Ni(II),carboxyl-modified cellulose aerogels with good adsorption properties were prepared by epichlorohydrin cross-linking and carboxylation modification of malate.Scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction were used to characterize the changes before and after carboxylation.Through the condition optimization experiment, it was found that, when the mass ratio of malic acid to cellulose was 1.75∶1,the amount of sodium dihydrogen phosphate was 0.5 g/g, and the reaction was 130 ℃ for 210 min, the removal rate of Ni(II)in the prepared modified cellulose aerogel could reach 92.61% under the conditions of pH=7.0 and adsorption time of 120 min.The results of kinetic and thermodynamic analysis showed that the adsorption process of Ni(II)by malic acid-modified cellulose aerogel could be described by the quasi-second-order kinetic model, which was in line with the Langmuir isothermal adsorption model and was a spontaneous endothermic process.
[1] 曹文庚,王妍妍,张栋,等.工业废水去除重金属技术的研究现状与进展[J].中国地质,2023,50(3):756-776.CAO W G,WANG Y Y,ZHANG D,et al.Research status and new development on heavy metals removal from industrial wastewater[J].Geology in China,2023,50(3):756-776.(in Chinese)
[2] 朱建龙,徐伟杰,郭硕铖,等.水体重金属污染危害及治理技术[J].现代农业科技,2022(6):129-132.ZHU J L,XU W J,GUO S C,et al.Hazard of heavy metal pollution in water and its treatment technology[J].Modern Agricultural Science and Technology,2022(6):129-132.(in Chinese)
[3] LIU L,WANG J L,ZHAI J R,et al.Regional disparities and technological approaches in heavy metal remediation:a comprehensive analysis of soil contamination in Asia[J].Chemosphere,2024,366:143485.
[4] PRIYA L,SIDDIK A M,VARGHESE G K.Source apportionment and pollution assessment of heavy metals in an urban waterbody[J].Chemical Engineering & Technology,2024,47(8):1174-1180.
[5] KARIM B A,MAHMOOD G,HASIJA M,et al.Assessment of heavy metal contamination in groundwater and its implications for dental and public health[J].Chemosphere,2024,367:143609.
[6] 王悦,杜小雨,黄鑫,等.废水中重金属离子的处理方法及研究现状[J].印染,2023,49(9):91-96.WANG Y,DU X Y,HUANG X,et al.Treatment methods and research status of heavy metal ions in wastewater[J].China Dyeing & Finishing,2023,49(9):91-96.(in Chinese)
[7] 王军.废水中重金属离子回收的现状研究[J].清洗世界,2023,39(3):66-68.
[8] 杨旭,历新宇,周娟苹,等.含重金属离子废水处理技术研究进展[J].材料导报,2023,37(9):60-69.YANG X,LI X Y,ZHOU J P,et al.Technological advances in the removal of heavy metal ions from wastewater[J].Materials Reports,2023,37(9):60-69.(in Chinese)
[9] ZHOU Y,ZHU L Q,YANG B M,et al.Heavy metal migration regimes in the production of syngas from solid waste by thermal plasma treatment[J].Journal of Hazardous Materials,2024,461:132698.
[10] DIAN X M,HAO J Y,ZHANG Z A,et al.Heavy metal removal performance of capacitive deionization technology studied by machine learning[J].Engineering Research Express,2024,6(3):035002.
[11] NOMPUMELELO K S M,EDWARD N N,MUTHUMUNI M,et al.Fabrication,modification,and mechanism of nanofiltration membranes for the removal of heavy metal ions from wastewater[J].ChemistrySelect,2023,8(33):e202300741.
[12] 罗竞,肖长烨.纤维素基气凝胶及其在水处理中的应用研究进展[J].化工环保,2024,44(4):463-468.LUO J,XIAO C Y.Research progress of cellulose-based aerogel and its application in water treatment[J].Environmental Protection of Chemical Industry,2024,44(4):463-468.(in Chinese)
[13] WANG X,JIANG S J,CUI S,et al.Magnetic-controlled aerogels from carboxylated cellulose and MnFe2O4 as a novel adsorbent for removal of Cu(II)[J].Cellulose,2019,26(8):5051-5063.
[14] HU Z H,OMER A M,OUYANG X K,et al.Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II)from aqueous solution[J].International Journal of Biological Macromolecules,2018,108:149-157.
[15] XU X Y,OUYANG X K,YANG L Y.Adsorption of Pb(II)from aqueous solutions using crosslinked carboxylated chitosan/carboxylated nanocellulose hydrogel beads[J].Journal of Molecular Liquids,2021,322:114523.
[16] DU Z L,ZHENG T,WANG P,et al.Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water[J].Bioresource Technology,2016,201:41-49
[17] ZHANG K,LI Z J,DENG N P,et al.Tree-like cellulose nanofiber membranes modified by citric acid for heavy metal ion(Cu2+)removal[J].Cellulose,2019,26(2):945-958.
[18] LI H M,HUANG J Y,SHEN S,et al.Superhydrophobic sodium alginate/cellulose aerogel for dye adsorption and oil-water separation[J].Cellulose,2023,30(11):7157-7175.
[19] PUTRI K N A,CHINPA W.Carboxyl-modified lignocellulose biomass of Moringa oleifera pod husk for effective removal of cationic dyes in single and binary dye systems[J].Desalination and Water Treatment,2021,243:294-304.
[20] 吴操,张丽芳,宋轩宇,等.改性壳聚糖对Ni(II)的吸附性能研究[J].沈阳理工大学学报,2024,43(6):48-54.WU C,ZHANG L F,SONG X Y,et al.Study on the adsorption performance of modified chitosan on Ni(II)[J].Journal of Shenyang Ligong University,2024,43(6):48-54.(in Chinese)
[21] 冯子仪,张丽芳.丁二酸改性酵母菌对水中Ni(II)的吸附研究[J].沈阳理工大学学报,2023,42(4):62-68,74.FENG Z Y,ZHANG L F.Study on the adsorption of Ni(II)in water by succinic acid modified yeast[J].Journal of Shenyang Ligong University,2023,42(4):62-68,74.(in Chinese)
[22] 孙志勇,张宇辰,吴喜军.聚乙烯亚胺交联膨润土对水中Cr(Ⅵ)的吸附性能与机制[J].复合材料学报,2025,42(2):949-960.SUN Z Y,ZHANG Y C,WU X J,et al.Adsorption performance and mechanism of polyethyleneimine cross-linked bentonite for Cr(VI)in aqueous solution[J].Acta Materiae Compositae Sinica,2025,42(2):949-960.(in Chinese)
基本信息:
DOI:
中图分类号:TQ427.26;O647.3;X703
引用信息:
[1]陈梁心铭,张丽芳,宋颖韬等.羧基改性纤维素气凝胶对Ni(II)的去除研究[J].沈阳理工大学学报,2025,44(05):67-73.
基金信息:
辽宁省教育厅高等学校基本科研项目(JYTMS20230217)